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1  Das ebene Doppelpendel im Schwerefeld

1.1  Die Newtonschen Bewegungsgleichungen

Aus 2 Drehgelenken, 2 starren Stangen und 2 Massen sowie einem homogenen Scherefeld kon-
struiere ich gedanklich ein idealisiertes Doppelpendel auf eine Weise, dass die Massen ‚frei‘ in 
einer Ebene schwingen können.

Ich mache mir das Leben leicht und hantiere mit punktförmig gedachten Pendelkörpern, deren 
Massen also jeweils im Schwerpunkt konzentriert sein sollen. Die starren Verbindungen der Pen-
delmassen selbst sind masselos1 gedacht.

Die Schwerkraft wirkt als einzige Kraft ‚nach unten‘, hier in der negativen Y-Richtung  (siehe 
Abbildung 1); sie darf als konstant angenommen werden; g = 9,81 m/s2 ist dabei die Gravitations-
konstante. Die Corioliskraft, die durch die sich drehende Erde verursacht wird, und die Rei-
bungskräfte, die durch die umgebende Luft und durch quietschende Drehgelenke entstehen 
würden, werden vernachlässigt.

Das Koordinatensystem wird so aufgespannt, dass das ortsfeste Lager des Pendelsystems im Ur-
sprung des Koordinatensystems liegt und die beiden Massen in der x-y-Ebene schwingen. Die y-
Achse orientiert sich an der Richtung des Schwerkraft. Die dritte, nicht eingezeichnete z-Achse 
steht senkrecht auf den beiden anderen Achsen und ist auf den Betrachter gerichtet. 

Die beiden Auslenkwinkel werden beginnend mit dem Wert 0° gegen die negative y-Richtung 
gemessen; das Vorzeichen eines Winkels ist positiv, wenn die Pendelmasse in Richtung der posi-
tiven x-Achse schwingt. Die Winkelwerte sind auf das Intervall (− π ,+ π] beschränkt.

(1) Genauer: Die Massen der Verbindungselemente sind gegenüber den Pendelmassen mi zu 
vernachlässigen.

Abbildung 1:  Bestimmungsgrößen für das 
ebene Doppelpendel 
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Die Newtonschen Bewegungsgleichungen der 
beiden punktförmigen Massen mi (i = 1,2) sind 
in kartesischen Koordinaten xi , yi , zi  (i = 1,2) 
schnell aufgestellt.

m1 ẍ1=0
m1 ÿ1=−m1 g
m2 ẍ2=0
m2 ÿ2=−m2 g

m1 z̈1=0

m2 z̈2=0

Die kartesischen Koordinaten der beiden Pen-
delmassen erfüllen für alle Zeiten zwei 
Zwangsbedingungen, die die unveränderli-
chen, eben ‚starren‘ Pendellängen festschrei-
ben. Zwei weitere Zwangsbedingungen zur-
ren das Problem als ein ebenes fest.

x1
2+x2

2=l1
2

(x2−x1)
2+(y2−y1)

2=l2
2

z1=0
z2=0

Mit Worten ausgedrückt bedeuten diese Zwangsbedingungen: Die ‚obere‘ Masse m1 bewegt sich 
auf einem in der räumlichen Lage fixierten Kreis K1 mit dem Radius l1 um den Ursprung (0, 0,0) 
des Koordinatensystems; die ‚untere‘ Masse m2 bewegt sich auf einem auf dem fixen Trägerkreis 
K1 mitgeführten Kreis2 K2 mit dem Radius l2, der den zeitabhängigen Mittelpunkt (x1, y1,0) hat 
(siehe Abbildung 2). Beide Kreise liegen in der Ebene z=0.

(2) Epizykel genannt: Das ist ein Kreis, dessen Mittelpunkt auf einem Trägerkreis geführt wird.

Abbildung 2:  Epizykel K2 reitet auf dem Trägerkreis K1
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1.2  Die Lagrangeschen Bewegungsgleichungen

Im Lagrange-Formalismus der zweiten Art werden die Zwangsbedingungen durch eine geeigne-
te Wahl von generalisierten Koordinaten berücksichtigt, der Formalismus der ersten Art führt 
(aufwendiger) explizite Zwangskräfte ein, die die Massen auf die gewünschten Bahnen zwingen.

Als generalisierte Koordinaten im Lagrange-
Formalismus werden für die beiden Freiheits-
grade die Auslenkungswinkel θ1 und θ2 (und 
deren Differenz Δθ = θ1 − θ2) verwendet.

x1 = l1 sin θ1

y1 =−l1 cosθ1

x2 = x1+l2 sin θ2

y2 = y1−l2 cosθ2

Δ θ = θ1−θ2

Der Leser rechnet leicht nach, dass mit diesen Winkeln die obigen beiden Zwangsbedingungen 
quasi ‚automatisch‘ erfüllt werden.

Die kinetische Energie T ergibt sich wie folgt 
aus den Geschwindigkeiten vi (i = 1,2) der Pen-
delmassen, wobei die Punkte über den Koor-
dinaten deren zeitliche Ableitung meint.

v1
2 = ẋ1

2+ ẏ1
2

v2
2 = ẋ2

2+ ẏ2
2

T = 1
2

m1 v1
2 + 1

2
m2 v2

2

Die potentielle Energie V im homogenen 
Schwerefeld der Erde ist gegeben durch:

V = m1 g y1 + m2 g y2

Die Gesamtenergie E des Doppelpendels ist 
eine Konstante der Bewegung, ist eine Erhal-
tungsgröße.

E = T + V = const

Die kinetische Energie T und die potentielle Energie V werden im Langrange-Formalismus als 
Funktionen der generalisierten Koordinaten θi und deren zeitliche Ableitungen θ̇i benötigt, da-
zu braucht es die zeitlichen Ableitungen der kartesischen Koordinaten xi und yi . Mit etwas Rech-
nerei erhält man daraus die beiden Energien T und V in den gewünschten Abhängigkeiten von 
den gewählten generalisierten Koordinaten.

ẋ1 = l1 cosθ1 θ̇1

ẏ1 = l1 sin θ1 θ̇1

ẋ2 = ẋ1 + l2 cosθ2 θ̇2

ẏ2 = ẏ1 + l2 sin θ2 θ̇2

T(θ1 , θ̇1 ,θ2 , θ̇2) =
1
2
(m1+m2) l1

2 θ̇1
2 + 1

2
m2 l2

2 θ̇2
2 + m2 l1 l2 θ̇1 θ̇2 cosΔθ

V (θ1 ,θ2) =−(m1+m2)g l1 cosθ1 − m2 g l2 cosθ2

Mit den 3 folgenden ‚willkürlichen‘ Konstanten werden die Formeln (für meinen Geschmack) et-
was übersichtlicher.

μ =
m2

m1+m2

λ =
l2

l1

ω = g
l1

m2 ≠ 0 l1 ≠ 0

Die kinetische Energie

T(θ1 , θ̇1 ,θ2 , θ̇2) = γT (θ̇1
2 + μ λ2 θ̇2

2 + 2μ λ θ̇1 θ̇2 cosΔθ) γT =
1
2
(m1+m2) l1

2
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Die potentielle Energie
V (θ1 ,θ2) = γV (cosθ1 + μ λ cosθ2) γV =−(m1+m2) l1 g

Die Gesamtenergie
E (θ1 , θ̇1 , θ2 , θ̇2) = γT (θ̇1

2 + μ λ2 θ̇2
2 + 2μ λ θ̇1 θ̇2 cos Δ θ) + γV (cos θ1 + μ λ cos θ2)

Die zwei Bewegungsgleichungen im Lagran-
ge-Formalismus ergeben sich dann für die ge-
neralisierten Koordinaten aus der Langrange-
Funktion L und den nebenstehenden Lagran-
ge'schen Gleichungen.

L ≝ T−V

∂L
∂θ1

− d
dt

∂L
∂ θ̇1

= 0

∂L
∂θ2

− d
dt

∂L
∂ θ̇2

= 0

(m1+m2) l1 θ̈1 + m2 l2 θ̈2 cosΔθ + m2 l2 θ̇2
2 sin Δθ + (m1+m2)g sin θ1 = 0

m2 l1 θ̈1 cosΔθ + m2 l2 θ̈2 − m2 l1 θ̇1
2 sin Δθ + m2 g sin θ2 = 0

Es sind die nachfolgenden Bewegungsgleichungen, die ich so aufbereite, dass nicht ich sondern 
das Werkzeug Scilab fleißig zu tun hat – Laufzeiteffizienz ist hier kein Thema.

Die Bewegungsgleichungen 2. Ordnung

θ̈1 + μ λ cosΔθ θ̈2 + μ λ sin Δθ θ̇2
2 + ω sin θ1 = 0

cosΔθ θ̈1 + λ θ̈2 − sin Δθ θ̇1
2 + ω sin θ2 = 0
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1.3  Aufbereitung der Bewegungsgleichungen für Scilab

Ziel der weiteren Schritte ist eine Umstellung der Bewegungsgleichungen in eine Matrix-Form, 
die von Scilab elegant verarbeitet werden kann.

p1 ≝ θ̇1 ṗ1 = θ̈1 p2 ≝ θ̇2 ṗ2 = θ̈2

ṗ1 + μ λ cosΔθ ṗ2 + μ λ sin Δθ p2
2 + ω sin θ1 = 0

cosΔθ ṗ1 + λ ṗ2 − sin Δθ p1
2 + ω sin θ2 = 0

( 1 μ λ cosΔθ
cosΔθ λ )( ṗ1

ṗ2
)= (−μλ sin Δθ p2

2 − ω sin θ1

sin Δθ p1
2 − ω sin θ2

)
p = (p1

p2
) ṗ = ( ṗ1

ṗ2
) b = (b1

b2
) θ = (θ1

θ2) θ̇ = (θ̇1

θ̇2
)

A = A (θ) b = b(θ ,p) A ṗ − b = 0 ṗ = A−1b

Die anfänglichen Lagrangeschen Bewegungs-
gleichungen lassen sich dann in Matrixform 
ausschreiben als Differentialgleichungen 1. 
Ordnung:

θ̇ = p

ṗ = A−1(θ) b(θ ,p)

A = ( 1 μ λ cosΔθ
cosΔθ λ ) b = (b1

b2
) b1 =−μλ sin Δθ p2

2 − ω sin θ1

b2 = sin Δθ p1
2 − ω sin θ2

Determinante von A
|A|= λ (1 −μ cos2Δθ)

|A|≠ 0 ∀θ1 ,θ2

Inverse Matrix A-1 von A

A−1 = 1
|A| ( λ −μλ cosΔθ

−cosΔθ 1 )
Mit dem wisschenschaftlichen Werkzeugkasten Scilab kann man sich auch den Weg über die in-
verse Matrix A-1 sparen – wenn man sich die zusätzlichen Rechenzeit leisten will und kann, und 
lässt Scilab A-1 für jeden Winkel berechnen3. Die 4 Differentialgleichungen lassen sich dann in ei-
ner kompakten Form darstellen, die Scilab in dieser Form ohne weiteres verarbeiten kann.

Matrixgleichung in Scilab
A ṗ = b |A|≠ 0

Lösungsvektor der Matrixgleichung in Scilab
ṗ = A ∖ b

Differentialgleichungssystem des Doppelpendels

{θ̇ṗ}= { p
A−1(θ) b(θ ,p)}

Differentialgleichungssystem für Scilab

{θ̇ṗ}= { p
A (θ) ∖ b(θ ,p)}

Die geschweiften Klammern sollen hier andeuten, dass die Gleichheit komponentenweise zu 
verstehen ist. Der Rückstrich ‚\‘ bezeichnet in Scilab die linksseitige Matrixmultiplikation: 
x = A\b ist eine Lösung der linearen Matrixgleichung A x = b.

(3) Solche Werkzeuge wie die Computeralgebrasysteme Mathematica oder Maxima gehen einen großen 
Schritt weiter und können einem einen Haufen lästigster Arbeit wie das Umformen von Gleichungen 
ersparen.
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Die 4 Funktionen auf der rechten Seite des 
obigen Gleichungssystems sind es, die dem 
Scilab-Integrator ode in der Form einer Rück-
gabeliste ydot einer Funktion, hier fdpLa-
grange beziehungsweise fdp genannt, über-
geben werden, zusammen mit dem Tripel der 
gewünschten Anfangsbedingungen yo, to, 
tData.

 function ydot=fdpLagrange(t,y)
     w1=y(1); w2=y(2);
     p1=y(3); p2=y(4);
     wd=fwdot(w1,w2,p1,p2);
     pd=fpdot(w1,w2,p1,p2);
     ydot=wd(1)*[1;0;0;0] ..
         +wd(2)*[0;1;0;0] ..
         +pd(1)*[0;0;1;0] ..
         +pd(2)*[0;0;0;1];
 endfunction;

 fdp=fdpLagrange;
 yData=ode(y0,t0,tData,fdp);
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2  Das Energieverhalten der Scilab-Lösungen

Für abgeschlosssene physikalische Systeme, solche also die mit der Umgebung keine Energie 
austauschen, gilt das grundlegende Gesetz von der Erhaltung der Energie. Erhält das Pendel mit 
den gewählten Anfangsbedingungen zur Zeit t0 eine Gesamtenergie E0 , so bleibt die Gesamt-
energie des hier modellierten Pendels für alle Zeiten erhalten, in der Form einer Gleichung aus-
gedrückt: E0 = E(t0) = E(t),  t ≥ t∀ 0 . 

Jede numerisch gewonnene Lösung der Bewegungsgleichungen für ein Pendel muss zum einen 
natürlich die Zwangsbedingungen4 zum anderen die Energieerhaltung in vorgegebene Grenzen 
erfüllen. Es macht also Sinn, die numerischen Lösungen dahingehend zu überprüfen, gerade 
auch weil das Doppelpendelproblem zu den Problemen gehört, die einem ‚deterministischen 
Chaos‘5 unterliegen und numerische Lösungen gerne auch mit einiger Vehemenz infrage gestellt 
werden.

2.1  Das Einfachpendel

Das ebene Einfachpendel und seine numerischen Lösungen im nichtlinearen Bereich dient mir 
als Anschauungsbeispiel, um ein ‚Gefühl‘ für das Energieverhalten bei dessen numerischen Lö-
sungen mittels Scilab zu erhalten.

Die Pendeldaten Masse, Länge und Zeiten sind gegeben durch:

m1=1.0           Pendelmasse [kg]

l1=1.0           Pendellänge [m]
t0=0 t_end=20    Dauer [s]

Die Anfangsbedingungen in den Einheiten Bogengrad [°] und Bogengrad pro Sekunde [°/s] so-
wie das oder die numerischen Lösungsverfahren sind den Grafiken zu entnehmen.

Einfaches Verhalten: Schwingen 

Das einfache Pendel schwingt ohne einen weiteren Anschub einfach nur brav hin und her, mehr 
ist nicht drin. Ich zähle in der nächsten Abbildung 3 knapp 8½ Schwingungen in der Laufzeit 
von 20 Sekunden ; ein Uhrenpendel mit einer Pendellänge von 0,994 m und einer kleinen An-
fangsauslenkung schwingt hierzulande  in 20 Sekunden genau 10 mal hin und her: Größere an-
fängliche Auslenkungen außerhalb des Winkelbereichs, in dem lineare Näherungen für die Be-
wegungsgleichungen sinnvoll sind, führen zu längeren Schwingungszeiten, zu einem langsame-
ren Schwingen zwischen den beiden Maximalamplituden von ± 90°.

(4) Die Zwangsbedingungen werden im Lagrange-Formalismus (der 2. Art) über die generalisierten 
Koordinaten berücksichtigt.

(5) Kleine Änderungen der Anfangs- oder der Parameterbedingungen führen zu ‚großen‘ Änderungen im 
Lösungsverhalten – der berühmte Schmetterlingseffekt.
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Nichts stört das Einfachpendel beim Hin- und Herschwingen, so harmonisch wie der Mensch 
seit den alten Griechen bis hinein in die Neuzeit die Welt gerne sähe, so göttlich wohlgeordnet 
und einfach zu verstehen, alles andere wäre Teufelswerk. Die Neuronen haben sich an dieses 
lineare Naturverständnis gewöhnt.

Abbildung 3:  Verlauf des Pendelwinkels über die Zeit

Abbildung 4:  Verlauf der Abweichungen der Gesamtenergie
von der anfänglichen Gesamtenergie über die Zeit
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Eine moderat stufenartig wachsende Tendenz des zeitlichen Verlaufs der im Theorieumfeld kon-
stanten Gesamtenergie Etot ist zu erkennen, ich würde aber dem Gefühl nach sagen, dass auch 
nach 20 Sekunden und vielen Integrationsschritten die in Abbildung 4 grafisch präsentierte Lö-
sung der Differentialgleichungen noch der Energieschale Etot(t = 0) zuzuordnen ist – die Abwei-
chungen sind minimal, wenn ich als Maßstab etwa die gemittelten kinetischen und potentiellen 
Energien mit den Werten +/− 4,50526 heranziehe.

2.2  Komplexeres Verhalten: Kreiseln

Die hohe Anfangsgeschwindigkeit zwingt das Pendel in Abbildung 5 zum ewigen Rotieren, was 
bei den hier gewählten Winkelkoordinaten in der Ebene an den senkrechten Sprüngen von +180° 
nach −180° erkennbar ist.

Die folgende Abbildung 6 zeigt, dass die Abweichungen von der konstanten Gesamtenergie 
auch beim rotierenden Einzelpendel über 20 Sekunden Laufzeit mininal sind, bezogen etwa auf 
den Wert 9,82635 der Gesamtenergie. Der nun stark ausgeprägte, fast sprungartige Verlauf 
springt sofort ins Auge, insbesondere auch der nahezu horizonzale Verlauf über die rund 2,5 Se-
kunden breite Zeitintervalle. Diese Intervalle liegen um den oberen stationären Bahnpunkt des 
Pendels – für den die Änderungsbeschleunigung des Umlaufwinkels verschwindet – und in des-
sen Umgebung sich die Änderungsgeschwindigkeit nur langsam ändert. Die übernächste Abbil-
dung 7 zeigt, dass in diesem Bereich um den stationären Punkt die potentiellen und die kineti-
schen Einzelenergien nahezu konstant bleiben.

Abbildung 5:  Verlauf des Pendelwinkels über die Zeit
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Abbildung 6:  Verlauf der Abweichungen der Gesamtenergie über die Zeit

Abbildung 7:  Verlauf der Einzelenergien Epot und Ekin über die Zeit



13 Das Doppelpendel im Lagrange-Formalismus mit Scilab

2.3  Das Doppelpendel

Die Pendeldaten Massen, Längen und Zeiten sind gegeben durch:

l1=1.0; m1=1.0;             Pendelmasse [kg];   Pendellänge [m]

l2=0.5; m2=0.5;             Pendelmasse [kg];   Pendellänge [m]

t0=0; tEnd=20;              Dauer [s]

Die Anfangsbedingungen in den Einheiten Bogengrad [°] und Bogengrad pro Sekunde [°/s] so-
wie das oder die numerischen Lösungsverfahren sind den Grafiken zu entnehmen.

Einfaches Verhalten

Die beiden waagerechten, gestrichelten Linien in kastanienbraun markieren in den Abbildungen 
den Winkelbereich zwischen +180° und −180°.

Das Runge-Kutta-Integrationsverfahren von Scilab (‚rk‘) steigt bei den hier gewählten Anfangbe-
dingungen aus mit der kaum sinnstiftenden Meldung „An error occurred in 'lsrgk' subroutine“. 
Ich habe nicht nachgebohrt und statt ‚rk‘ einfach ‚adams‘ benutzt. Der Ausstieg könnte daran lie-
gen, dass bei gleicher Anfangsauslenkung der Pendelkörper die Relativkoordinate θ1(0) − θ2(0) 
verschwindet.

Abbildung 8:  Verlauf der Pendelwinkel über die Zeit für 20 Sekunden
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Beide Pendel werden anfänglich ‚nach links‘ um einen rechten Winkel (entsprechend -90°) aus-
gelenkt. Das obere, schwerere Pendel lässt sich durch seinen leichteren Partner im Schlepptau ei-
ne ganze Weile kaum stören, es schwingt noch recht harmonisch hin und her. Das leichtere, un-
tere Pendel schwingt ebenfalls eine ganze Weile synchron mit dem oberen Partner, allerdings be-
reits mit kleinen Dellen, Störungen der reinen Harmonie; zur Zeit 11,5 s überholt das kleine Pen-
del allerdings das schwerere zum ersten Mal nach rechts um etliche Bogengrade, dann mit 
wachsender Amplitude zur Zeit 15,5 s ein zweites Mal, nun nach links – um weiter Schwung auf-
zunehmen, sodass es bei 18,0 s für einen Überschlag reicht. Die nächste Abbildung 9, die nur das 
zeitliche Integrationintervall auf 40 Sekunden hoch schraubt, zeigt, dass es bei dem einenn Salto 
nicht bleibt, das Ablaufmuster ändert sich gänzlich.

Späte Einsicht: Ein schlichtes Diagramm, das den Zeitverlauf der Auslenkungswinkel zeigt, sagt 
mehr als 1000 Bilder, die ein vergänglich flüchtiges Video ergeben.

Die folgenden Abbildungen 10 und 11 widmen sich dem zeitlichen Energieverhalten. Die Ge-
samtenergie ist eine Konstante der Bewegung, sie verschwindet für die gewählten Anfangs-
bedingungen Etot(t)=0, daher gilt für die beiden Teilenergien Ekin(t) = − Epot(t). 

Die Abweichungen der berechneten Gesamtenergie über die Zeit vom Sollwert erscheinen mir 
über den Berechnungszeitraum von 20 s marginal zu sein; die mittels ‚adams‘ berechnete Lö-
sung der Ausgangsdifferentialgleichungen, dargestellt in der  Abbildung 8, sollte also eine Lö-
sung sein, wie sie durchaus auch ein physikalischen Doppelpendel in der realen Welt absolvie-
ren könnte. Es muss natürlich nicht die genau diese eine determinierte Lösung sein, deren Exis-
tenz die Mathematik für jeden Satz von Anfangsbedingungen auch für das Doppelpendel be-
weist.

Abbildung 9:  Verlauf der Pendelwinkel über die Zeit für 40 Sekunden
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Ein Anfangswinkel von 90° klingt nach einem messerscharfen Wert, doch die reele Zahl, die sich 
hinter 90 Bogengrad versteckt, ist π/2 und die Kreiszahl Pi steht für eine nicht-rationale Zahl, die 
sich also nicht als Bruch zweier ganzer Zahlen darstellen lässt und die in allen Zahlensystemen 
unendlich viele, nicht-periodisch auftretende Nachkommastellen hat. In der realen Anwendung 
haben alle reelle Zahlen allerdings nur endliche Dezimalstellen, womit die reale Existenz der ei-
nen gesuchten Lösung in weiteste Ferne rücken kann. Der Leser denke hier an den Schmetter-
lingseffekt.

Da die gekoppelten Differentialgleichungen des Doppelpendels sich nicht per reiner Mathema-
tik geschlossen lösen lassen, bleibt nur das Experiment mit numerischen Näherungsverfahren, 
unterstützt durch Hardware und Software. Die moderne Mathematik hat zwar mit einem gro-
ßen Aufwand gezeigt, dass auch die Lösungsräume deterministisch chaotischer Systeme, zu de-
nen das Doppelpendel gehört, durchaus innere Strukturen aufweisen, besonders unerwartet 
und weitergehend hilfreich sind sie zumindest für mich und mein Interesse nicht – viel Auf-
wand und wenig Ertrag.

Es bleibt also für einen, der schlicht sehen will, wie ein Doppelpendel schwingt, das lustvolle 
Experiment mit in allen Belangen endlicher Hardware und Software und er muss dabei all deren 
Schwächen in Kauf nehmen, nicht anders als wie bei einem physikalischen Experiment.
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Abbildung 10:  Verlauf der Pendelenergien des Doppelpendels über die Zeit

Abbildung 11:  Verlauf der Abweichungen der berechneten Gesamtenergie
über die Zeit vom Sollwert



17 Das Doppelpendel im Lagrange-Formalismus mit Scilab

Komplexes Verhalten

Die beiden waagerechten, gestrichelten Linien in kastanienbraun markieren den Winkelbereich 
zwischen +180° und −180°.

Abbildung 12:  Verlauf der Pendelwinkel über die Zeit
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Abbildung 13:  Verlauf der Pendelenergien über die Zeit

Abbildung 14:  Verlauf der Abweichungen der berechneten Gesamtenergie 
über die Zeit vom Sollwert ETOT(0)
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3  Die Stabilität der Scilab-Lösungen

l1=1.0; m1=1.0;             Pendelmasse [kg];   Pendellänge [m]

l2=0.5; m2=0.5;             Pendelmasse [kg];   Pendellänge [m]

t0=0; tEnd=20;              Dauer [s]

3.1  Einfluss von Integrationsverfahren

Die beiden waagerechten, gestrichelten Linien in kastanienbraun markieren den Winkelbereich 
zwischen +180° und −180°.

Die anfänglichen Winkelgeschwindigkeiten wurden hier auf 10°/s gesetzt, da das Lösungsver-
fahren ‚rk‘ für den Anfangswert 0°/s regelmäßig mit einer Ausnahme ausstieg.

Einfaches Verhalten

Komplexeres Verhalten

Abbildung 15:  Zwei langsame Doppelpendel berechnet mit ‚adams‘ und ‚rk‘

Abbildung 16:  Zwei schnelle Doppelpendel berechnet mit ‚adams‘ und ‚rk‘



20 Das Doppelpendel im Lagrange-Formalismus mit Scilab

3.2  Einfluss von Anfangsbedingungen

Die beiden waagerechten, gestrichelten Linien in kastanienbraun markieren den Winkelbereich 
zwischen +180° und −180°.

Die anfänglichen Winkelgeschwindigkeiten wurden hier auf 10°/s gesetzt, da das Lösungsver-
fahren ‚rk‘ für den Anfangswert 0°/s regelmäßig mit einer Ausnahme ausstieg.

Einfaches Verhalten

Zwei ‚langsame‘ Doppelpendel DP1 und DP2 werden im Zeitablauf verglichen. In der Abbil-
dung 17 unterscheiden sich die anfänglichen Auslenkwinkel für das obere Einzelpendel unter-
scheiden sich um 1°, erst nach 19 Sekunden zeigen sich signifikante Unterschiede im Verhalten. 
In der Abbildung 18 beträgt der anfängliche Winkelunterschied für das obere Einzelpendel nur 
noch 0,1°, nach 19 Sekunden sind die ersten kleinen Änderungen im Ablauf zu erkennen. 

Abbildung 18:  Zwei langsame Doppelpendel berechnet mit Δθ(0)=0.1° und ‚rk‘

Abbildung 17:  Zwei langsame Doppelpendel berechnet mit Δθ(0)=1° und ‚rk‘
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Komplexeres Verhalten

Zwei ‚schnelle‘ Doppelpendel DP1 und DP2 werden im Zeitablauf verglichen, die anfänglichen 
Winkelgeschwindigkeiten für beide Einzelpendel wurden dazu auf 254°/s gesetzt; das untere 
Einzelpendel hängt hier anfänglich nach unten.

In der Abbildung 19 unterscheiden sich die anfänglichen Auslenkwinkel für das obere Einzel-
pendel um geringe 0,1°, schon nach 2 Sekunden beginnen sich signifikante Unterschiede im Ver-
halten abzuzeichnen. In der Abbildung 20 beträgt der anfängliche Winkelunterschied für das 
obere Einzelpendel nur noch winzige 0,001°, dennoch beginnen sich bereits nach 5 Sekunden 
die Verhaltensweisen signifikant zu unterscheiden.

Abbildung 20:  Zwei schnelle Doppelpendel berechnet mit Δθ(0)=0.001° und ‚rk‘

Abbildung 19:  Zwei schnelle Doppelpendel berechnet mit Δθ(0)=0.1° und ‚rk‘
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Etwas Anhang

A. Quotientenmengen für Winkel

Relationen

Eine (zweistellige) Relation in einer Menge M 
wird definiert als eine Teilmenge ~ der Pro-
duktmenge M2.

Produktmenge
M2 ≝ M×M = {(x , y) | x∈M ∧ y∈M}

Relation als Teilmenge
~ ⊂ M2

Eine Relation ~ in einer Menge M heißt Äquivalenzrelation, wenn sie reflexiv, symmetrisch und 
transitiv ist.

Die Relation ~ ist reflexiv
⇔ ∀

x∈M
: (x∼x)

Die Relation ~ ist symmetrisch
⇔ ∀

x∈M
∀

y∈M
: (x∼y ⇒ y∼x)

Die Relation ~ ist transitiv
⇔ ∀

x∈M
∀

y∈M
∀

z∈M
: (x∼y ∧ y∼z ⇒ x∼z)

Die Menge aller zu einem x aus M in Relation stehender Elemente aus M heißt Äquivalenzklas-
se [x]. Jedes Element aus M ist in genau einer Äquivalenzklasse enthalten und diese Klassen 
sind paarweise disjunkt.

Eine Äquivalenzrelation erzeugt eine neue Menge M/~, die Menge der Äquivalenzklassen von 
M; sie wird die Quotientenmenge von M nach ~ genannt.

Äquivalenzklasse [x] der Relation ~
[x ] = {y | x∈M ∧ y∈M ∧ x∼y}

Quotientenmenge M/~ von M nach ~
M /~ = { [x ] | x∈M}

Ein Element y[x] aus einer Äquivalenzklasse [x] heißt Repräsentant der Klasse [x].

Eine Teilmenge R~ aus M heißt vollständiges Repräsentationssystem der Menge aller Äquivalenz-
klassen M/~, wenn R~ genau ein Element jeder Klasse von M/~ enthält.
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Die flache Einheitssphäre S1

Die beiden Größen, die die Position der Pendelmassen6 in der Schwingungsebene festlegen und 
die hier als generalisierte Koordinaten zur Problembeschreibung verwendet werden, sind 
schlichte, geometrisch definierte Winkel, deren Winkelweite in Bruchteilen des Vollkreises ge-
messen wird. Im Bogenmaß wird dem Vollkreis die ‚Länge‘ 2π als Maßzahl zugewiesen. Ich 
verwende gerichtete Winkel, um die Richtung der Auslenkung der Pendelmassen mit Werten 
aus dem Intervall (− π ,+ π] zu beschreiben. Eine Besonderheit gilt es nun zu berücksichtigen: 
Die Punkte mit den reellen Zahlenwerten − π und +π sollen im Ortsraum eines Pendels densel-
ben Punkt beschreiben. Dazu folgt etwas an mathematischen Formalismus:

In den reellen Zahlen ℝ sei eine Äquivalenz-
relation namens ~ für die Werte v und w wie 
nebenstehend definiert:

v , w ∈ ℝ
v∼w :⇔ (∃n∈ℤ ⇒ v=w+2π n)

[w ] ≝ {v | w∈ℝ ∧ v∈ℝ ∧ v∼w}

S1 ≝ ℝ/~

Ein Winkelwert w aus dem halboffenen vollständigen Repräsentationsintervall dieser Relation 
W~= (− π ,+π] ℝ dient als ein Repräsentant der Äquivalenzklasse [w] ℝ/~ , insbesondere gehört 
der linke Randwert − π des Intervalls zur Äquivalenzklasse [+π]., denn es gilt ja die Äquivalenz 
(− π) ~ (+π), beziehungsweise ausgeschrieben (− π) = (+π) − 2π .

Die eindimensionale7 Quotientenmenge S1 
lässt sich in einen zweidimensionalen 
Produktraum ℝ2 = ℝ   ℝ x einbetten. 

S1 ≅ {(cosθ , sin θ) | θ∈W~}⊂ ℝ2

cos2θ+sin2θ = 1

Die über Äquivalenzklassen definierte Einheitssphäre S1 lässt sich somit eins-zu-eins auf die 
Einheitskreislinie im ℝ2 abbilden.

Der flache Torus T2

In dem Produktraum ℝ2 sei eine Äquivalenz-
relation namens   für die Werte v und w wie 
nebenstehend definiert:

v , w ∈ ℝ2 v=(v1 , v2) w=(w1 , w2)
v  w :⇔ (v1∼w1)∧(v2∼w2)

[w ] ≝ {v | w∈ℝ2 ∧ v∈ℝ2 ∧ v  w}

Mit dieser Äquvalenzrelation lässt sich der 
flache zweidimensionaleTorus T2 als Quotien-
tenraum definieren oder auch direkt als topo-
logisches Produkt der Einheitsshäre S1.

T2 ≝ ℝ2 /

T2 = S1×S1

(6) Genauer: deren Schwerpunkte
(7) Deshalb der Terminus ‚flach‘ in der Überschrift.
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B. Die Lagrangeschen Gleichungen 1. Art

Die beiden Massen des Doppelpendels können nicht beliebig frei im Raume herum schwingen, 
per Konstruktion schwingen sie nur in einer Ebene, zudem sind die Verbindungen der Pendel-
massen starr und somit von fester Länge: Die Pendelmasse 1 bewegt sich auf einem Kreis um 
den Aufhängepunkt O, die Pendelmasse 2 auf einem Kreis um die Pendelmasse 2. In den New-
tonschen Bewegungsgleichungen müssen diese vorgegebenen, die Dynamik einschränkenden 
Bedingungen berücksichtigt werden. 

Die althergebrachte Mechanik ergänzt dazu die Newtonschen Bewegungssgleichungen um 
Zwangskräfte, die die Dynymik im gewünschten Maße einschränken.

Die hier wirksamen, treibenden Kräfte K⃗ i

lassen sich über den Nabla-Operator ∇ i  aus 
einem Potential Vi ableiten; Vi ist die potenti-
elle Energie des Teilchen im homogenen 
Schwererfeld der Stärke g.

K⃗ i( r⃗ i) =−m i g êy  i ∈ {1,2}

V i( r⃗ i) = m i g (êy⋅⃗r i) = m i g y i

K⃗ i( r⃗ i) =−∇ i V i( r⃗ i)

∇ i ≝ êx
∂
∂ x i

+ êy
∂
∂ y i

+ êz
∂
∂ z i

Der Nabla-Operator  aus der Vektoranalysis ist ein Vektor, dessen Komponenten die partiel-
len Ableitungen nach den kartesischen Koordinaten x, y und z sind. Der Index i bezieht sich 
hier auf die i-teVariable r⃗ i einer Funktion f k ( r⃗ 1 , r⃗ 2)  ,  auf die hier der Nabla-Operator wirken 
soll.

Diese beiden Zwangsbedingungen beschrei-
ben das Doppelpendel als starr. Das Punkt-
teilchen 1 hat vom Aufhängepunkt O den 
konstanten radialen Abstand l1. Das Punktteil-
chen 2 hat vom Punktteilchen 1 für alle Zeiten 
den konstanten radialen Abstand l2. 

f 1( r⃗ 1) = r⃗ 1
2 − l1

2 = 0

r⃗ 12 = r⃗ 2 − r⃗ 1

f 2( r⃗ 1 , r⃗ 2) = r⃗ 12
2 − l2

2 = 0

Abbildung 21: Orts- und Kraftvektoren
für das ebene Doppelpendel
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Diese beiden Zwangsbedingungen legen fest, 
dass sich beide Teilchen per Konstruktion des 
Doppelpendels für alle Zeiten nur in einer 
Ebene bewegen können.

f 3( r⃗ 1) = z1 = 0

f 4( r⃗ 2) = z2 = 0

d
d t

f ( r⃗ 1 , r⃗ 2 , t) =∑
i=1

2

{ ˙⃗r i⋅∇ i f ( r⃗ 1 , r⃗ 2)} +
∂
∂ t

f ( r⃗ 1 , r⃗ 2 , t)

d
d t

f 1( r⃗ 1) = 2 ˙⃗r 1⋅⃗r 1 = 0
d
d t

f 2( r⃗ 1 , r⃗ 2) = 2 ˙⃗r 12⋅⃗r 12 = 0

d2

d t2 f 1( r⃗ 1) = 2 ¨⃗r 1⋅⃗r 1 + 2 ˙⃗r 1
2 = 0

d2

d t2 f 2( r⃗ 1 , r⃗ 2) = 2 ¨⃗r 12⋅⃗r 12 + 2 ˙⃗r 12
2 = 0

d
d t

f 3( r⃗ 1) = ż1 = 0  z̈1 = 0
d
d t

f 4( r⃗ 2) = ż2 = 0  z̈2 = 0

∂
∂ t

f k = 0 k ∈ {1,2,3,4}

Ungebunden hätten die hin und her schwingenden oder auch rotierenden Pendelmassen insge-
samt 6 Freiheitsgrade, die 4 Zwangsbedingungen beschränken die Bewegungsmöglichkeiten 
der Pendelmassen daher auf eine (zeitunabhängige) Fläche, die eine zweidimensionale Unter-
mannigfaltigkeit MZ

2⊂ ℝ3⊗ℝ3 des Ausgangsraumes ist. Eine Möglichkeit, diese Einschränkun-
gen in den physikalischen Bewegungungsgleichungen zu berücksichtigen, ist die Einführung 
von zusätzlichen Zwangskräften, die bewerkstelligen, dass die beiden Punktteilchen sich aus-
schließich auf der zweidimensionalen Mannigfaltigkeit MZ

2 bewegen können.

Lagrangesche Parameter und Zwangskräfte

 λk ( r⃗ 1 , r⃗ 2 , t ) k=1,2,3,4

m i
¨⃗r i = K⃗ i + Z⃗i( r⃗ 1 , r⃗ 2 , t )  i ∈ {1,2} Z⃗i( r⃗ 1 , r⃗ 2 , t ) =∑

k=1

4

λk ( r⃗ 1 , r⃗ 2 , t ) ∇ i f k ( r⃗ 1 , r⃗ 2)

∇1 f 1( r⃗ 1) = 2 r⃗ 1  

∇1 f 2( r⃗ 1 , r⃗ 2) =−2 r⃗ 12 ∇ 2 f 2( r⃗ 1 , r⃗ 2) = 2 r⃗ 12

∇1 f 3( r⃗ 1) = êz ∇ 2 f 4( r⃗ 2) = êz

Z⃗1 = 2λ1 r⃗ 1 − 2λ2 r⃗ 12 + λ3 êz Z⃗2 = 2λ2 r⃗ 12 + λ4 êz

Die vollständigen Bewegungsgleichungen

m1
¨⃗r 1 = K⃗1( r⃗ 1) + 2λ1 r⃗ 1 − 2λ2 r⃗ 12 + λ3 êz m2

¨⃗r 2 = K⃗2( r⃗ 2) + 2λ2 r⃗ 12 + λ4 êz

BWG êz  => λ3 = λ4 = 0
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Die Energien

Kinetische Energie der Masse i

Ti( ˙⃗r i) =
1
2

m i
˙⃗r i

2
Potentielle Energie der Masse i
V i( r⃗ i) = m i g (êy⋅⃗r i) = m i g y i

Gesamtenergie beider Massen
E ( t ) = E ( r⃗ 1 , ˙⃗r 1 , r⃗ 2 , ˙⃗r 2 ; t ) E ( r⃗ 1 , ˙⃗r 1 , r⃗ 2 , ˙⃗r 2 ; t ) =∑

i=1

2

{Ti( ˙⃗r i) + V i( r⃗ i)}

m i
¨⃗r i⋅˙⃗r i =

d
dt

(1
2

m i
˙⃗r i

2) = Ti( ˙⃗r i) K⃗ i( r⃗ i)⋅˙⃗r i =−(∇ i V i( r⃗ i))⋅˙⃗r i =−d
dt

V i( r⃗ i)

{m i
¨⃗r i − K⃗ i( r⃗ i)}⋅˙⃗r i =

d
dt

(Ti( ˙⃗r i) + V i( r⃗ i))
d
dt

E( t) =∑
i=1

2

{m i
¨⃗r i − K⃗ i( r⃗ i)}⋅˙⃗r i

Für unser abgeschlossenes System Doppel-
pendel, welches also mit der Umgebung nicht 
wechselwirkt, gilt der Satz von der Erhaltung 
dessen Gesamtenergie :

d
dt

E ( t ) = 2λ1 ( r⃗ 1⋅˙⃗r 1) + 2λ2 ( r⃗ 12⋅˙⃗r 12) = 0

Die Energieerhaltung

f 1( r⃗ 1 , t ) = r⃗ 1
2 − l1( t )

2 = 0
d
d t

f 1( r⃗ 1 , t) = 2 r⃗ 1⋅˙⃗r 1 +
∂
∂ t

f ( r⃗ 1 , t) = 0

d
dt

E( t) =−λ1
∂
∂ t

f ( r⃗ 1 , t) d
dt

E( t) = 2λ1 l1( t) l̇1( t) ≠ 0

Der Drehimpuls

p⃗i = m i⋅˙⃗r i r⃗ i × m i
¨⃗r i = r⃗ i × ˙⃗pi =

d
dt

( r⃗ i × p⃗i) =
d
dt

L⃗i

M⃗i = r⃗ i × K⃗ i M⃗i =−m i g r⃗ i × êy

d
dt

L⃗1 = M⃗1 − 2λ2 r⃗ 1 × r⃗ 2
d
dt

L⃗2 = M⃗2 + 2 λ2 r⃗ 1 × r⃗ 2

L⃗ =∑
i=1

2

L⃗i  M⃗ =∑
i=1

2

M⃗i

d
dt

L⃗ = M⃗
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C. Ausflug in die Zylinderkoordinaten

Die Einheitsvektoren

êρ(θ) = ( sin θ
−cosθ

0 ) êθ(θ) = (cosθ
sin θ

0 ) êz = (0
0
1)

r⃗ (x , y , z) = x êx + y êy + z êz r⃗ (ρ ,θ , z) = ρ êρ(θ) + z êz

Einige Skalar- und Kreuzprodukte

Δθ = θ1−θ2

êρ(θ1)⋅êρ(θ2) = cosΔθ

êρ(θ1)×êρ(θ2) =−sin Δθ êz

êθ(θ1)⋅êθ(θ2) = cosΔθ

êθ(θ1) × êθ(θ2) =−sin Δθ êz

êρ(θ1)⋅êθ(θ2) = sin Δθ

êρ(θ)⋅êθ(θ) = 0

êρ(θ1)×êθ(θ2) = cosΔθ êz

êρ(θ)×êθ(θ) = êz

êρ(θ)×êx =−cosθ êz

êρ(θ)×êy = sin θ êz

êθ(θ)×êx =−sin (θ) êz

êθ(θ)×êy = cos(θ) êz

Abbildung 22: Orts- und Geschwindigkeitsvektoren
für das ebene Doppelpendel
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Die zeitlichen Ableitungen der Einheitsvektoren

˙̂eρ(θ) = θ̇ êθ(θ) ˙̂eθ(θ) =−θ̇ êρ(θ) ˙̂ez = 0⃗

Die Orts- und Geschwindigkeitsvektoren

r⃗ 1(θ1) = l1 êρ(θ1)

|⃗r 1(θ1)|= l1

r⃗ 12(θ2) = l2 êρ(θ2)

|⃗r 12(θ2)|= l2

r⃗ 2(θ1 ,θ2) = r⃗ 1(θ1) + r⃗ 12(θ2) r⃗ 2(θ1 ,θ2) = l1 êρ(θ1) + l2 êρ(θ2)

|⃗r 2(θ1 ,θ2)|= √ l1
2 + 2 l1 l2 cosΔθ + l2

2

˙⃗r 1(θ1) = l1 θ̇1 êθ(θ1) ˙⃗r 12(θ2) = l2 θ̇2 êθ(θ2)

˙⃗r 2(θ1 ,θ2) = l1 θ̇1 êθ(θ1) + l2 θ̇2 êθ(θ2)

r⃗ 1(θ1) × r⃗ 2(θ1 ,θ2) =−l1 l2 sin Δθ êz

D. Rund um den Drehimpuls

Der Drehimpuls L⃗i eines Punktteilchens der Masse mi am Orte
r⃗ i mit dem Impuls ist definiert durch das vektorielle Kreuz-

produkt aus Orts- und Impulsvektor.

Der Gesamtdrehimpuls L⃗ des Doppelpendels ergibt sich durch 
eine Summe über die Einzelteilchen. Bezugspunkt der Drehim-
pulse ist der Aufhängepunkt O des Doppelpendels.

p⃗i = m ˙⃗r i

L⃗ =∑
i=1

2

L⃗i =∑
i=1

2

r⃗ i × p⃗i

Das Drehmoment M⃗i eines Punktteilchens der Masse mi am 
Orte r⃗ i , auf dem eine Kraft K⃗ i wirkt, ist definiert durch das 
vektorielle Kreuzprodukt aus Orts- und Kraftvektor.

Das Gesamtdrehmoment M⃗ , das auf das Doppelpendel wirkt, 
ergibt sich durch eine Summe über die Einzelteilchen. Bezugs-
punkt des Drehmomentes ist der Aufhängepunkt O des Doppel-
pendels.

Die zeitlichen Entwicklung des Drehimpulses wird durch das 
wirksame Drehmoment bestimmt.

K⃗ i =−m i g êy

M⃗ =∑
i=1

2

M⃗i =∑
i=1

2

r⃗ i × K⃗ i

d
dt

L⃗ = M⃗

Das Drehmoment

M⃗ =∑
i=1

2

M⃗i =∑
i=1

2

r⃗ i×K⃗ i K⃗ i =−m i g êy

M⃗1(θ1) =−m1 l1 g sin θ1 êz M⃗2(θ1 ,θ2)=−m2 g {l1 sin θ1+l2 sin θ2} êz
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M⃗ (θ1 , θ2) = γV {sin θ1 + μ λ sin θ2} êz γV =−(m1+m2) l1 g

Der Drehmomentvektor des Doppelpendels steht somit konstant senkrecht auf der Schwin-
gungsebene.

Der Drehimpuls

L⃗ =∑
i=1

2

L⃗i =∑
i=1

2

r⃗ i × p⃗i p⃗i = m i
˙⃗r i

Δθ = θ1−θ2 r⃗ 12 = r⃗ 2 − r⃗ 1 γL = (m1+m2) l1
2

L⃗1(θ̇1) = m1 l1
2 θ̇1 êz

L⃗2(Δ θ, θ̇1 , θ̇2) = m2 {l1
2 θ̇1 + l1 l2 (θ̇1+θ̇2) cos Δ θ + l2

2 θ̇2} êz  

L⃗ (Δ θ, θ̇1 , θ̇2) = γL {θ̇1 + μ λ (θ̇1+θ̇2) cos Δ θ + μ λ2 θ̇2} êz  

d
dt

L⃗(Δ θ, θ̇1 , θ̇2) = γL {θ̈1 + μ λ (θ̈1+θ̈2) cos Δ θ + μ λ (θ̇2
2−θ̇1

2) sin Δ θ + μ λ2 θ̈2} êz

Auch der Drehimpulsvektor des Doppelpendels steht somit senkrecht auf der Schwingungs-
ebene, hier die x-y-Ebene.
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E. Die Sonderfälle

Verschwindet Schwerkraft oder ist sie zu vernachlässigen, so gilt das auch für das Drehmoment
M⃗ ( t )=0 mit der Folge, dass eine zweite Konstante der Bewegung ins Doppelpendelspiel 

kommt: der Gesamtdrehimpuls ist nach Betrag und Richtung eine Konstante L⃗ ( t )=L⃗ (0)

Die Schwerkraft ist etwa zu vernachlässigen, wenn die kinetische Energie sehr groß wird und 
die potentielle Energie beschränkt bleibt8. Diesen Fall realisiert man einfach mit großen anfäng-
lichen Winkelgeschwindigkeiten.

Die Lösungen für all diese Fälle lassen sich mithilfe der konstanten Bewegungsgrößen durch ei-
ne direkte Integration gewinnen, worauf ich hier allerdings verzichte. Ich benutze auch für die 
Sonderfälle den oben abgeleiteten Lösungsweg mit Scilab.

Δθ = θ1−θ2 γL = (m1+m2) l1
2 γT =

1
2
(m1+m2) l1

2

Die konstante Gesamtenergie für g=0
E (Δ θ, θ̇1 , θ̇2) = γT {θ̇1

2 + 2μ λ θ̇1 θ̇2 cos Δ θ + μ λ2 θ̇2
2}≡ E0

Der konstante Gesamtdrehimpuls für g=0
L⃗ (Δ θ, θ̇1 , θ̇2) = γL {θ̇1 + μ λ (θ̇1+θ̇2) cos Δ θ + μ λ2 θ̇2} êz ≡ L0 êz

Für die nächste Abbildung 23 habe ich die Gravitationskonstante mit 0,981 auf ein Zehntel ihres 
Erdwertes reduziert und die Integrationszeit auf 80 s verdoppelt. Das leichtere Pendel braucht 
nun gut 55 s, bis es sein Hin- und Herschwingen so sehr aufgeschaukelt hat, dass es Vollkreise 
durchlaufen kann. Der Bewegungstypus gegenüber Abbildung 9 ist aber unverändert.

Die übernächste Abbildung 24 setzt die Gravitationskonstane auf Null; damit sich das Pendel 
überhaupt in Bewegung setzt, wird die anfängliche Winkelgeschwindigkeit die schwerere Pen-
delmasse auf den hohen Anfangswert von 254 m/s2 gesetzt. Der Bewegungstypus ist der einer 
im wesentlichen nur leicht gestörten periodischen Bewegung, beide Körper rotieren in Vollkrei-
sen.

In der letzten Abbildung 25 wird die irdische Schwerkraft wieder in Kraft gesetzt und die 
schwerere Masse auf den sehr hohen Anfangswert von 1270 m/s2 gesetzt. Wie zu erwarten bewe-
gen sich beide Pendelmassen nun ganz ähnlich dem schwerelosen Fall der Abbildung 24.

(8) … also die Pendelmassen beschränkt bleiben
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Abbildung 23:  Verlauf der Pendelwinkel über die Zeit für 80 Sekunden

Abbildung 24:  Verlauf der Pendelwinkel über die Zeit für 20 Sekunden



33 Das Doppelpendel im Lagrange-Formalismus mit Scilab

Abbildung 25:  Verlauf der Pendelwinkel über die Zeit für 3 Sekunden
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