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3 Das Doppelpendel im Lagrange-Formalismus mit Scilab

1 Das ebene Doppelpendel im Schwerefeld

1.1 Die Newtonschen Bewegungsgleichungen

Aus 2 Drehgelenken, 2 starren Stangen und 2 Massen sowie einem homogenen Scherefeld kon-
struiere ich gedanklich ein idealisiertes Doppelpendel auf eine Weise, dass die Massen ,frei’ in
einer Ebene schwingen konnen.

Ich mache mir das Leben leicht und hantiere mit punktféormig gedachten Pendelkorpern, deren
Massen also jeweils im Schwerpunkt konzentriert sein sollen. Die starren Verbindungen der Pen-
delmassen selbst sind masselos' gedacht.

Die Schwerkraft wirkt als einzige Kraft ,nach unten’, hier in der negativen Y-Richtung (siehe
Abbildung 1); sie darf als konstant angenommen werden; g=9,81 m/s” ist dabei die Gravitations-
konstante. Die Corioliskraft, die durch die sich drehende Erde verursacht wird, und die Rei-
bungskrafte, die durch die umgebende Luft und durch quietschende Drehgelenke entstehen
wiirden, werden vernachldssigt.

A Schwerkraft

Y

Abbildung 1: BestimmungsgrofSen fiir das
ebene Doppelpendel

Das Koordinatensystem wird so aufgespannt, dass das ortsfeste Lager des Pendelsystems im Ur-
sprung des Koordinatensystems liegt und die beiden Massen in der x-y-Ebene schwingen. Die y-
Achse orientiert sich an der Richtung des Schwerkraft. Die dritte, nicht eingezeichnete z-Achse
steht senkrecht auf den beiden anderen Achsen und ist auf den Betrachter gerichtet.

Die beiden Auslenkwinkel werden beginnend mit dem Wert 0° gegen die negative y-Richtung
gemessen; das Vorzeichen eines Winkels ist positiv, wenn die Pendelmasse in Richtung der posi-
tiven x-Achse schwingt. Die Winkelwerte sind auf das Intervall (—t,+ 1] beschréankt.

(1) Genauer: Die Massen der Verbindungselemente sind gegeniiber den Pendelmassen m; zu
vernachldssigen.
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Die Newtonschen Bewegungsgleichungen der m; X,=0 m, z,=0
beiden punktférmigen Massen m; (i=1,2) sind m y,=—mg

in kartesischen Koordinaten x;, yi, z; (i=1,2) m, X,=0 m, z,=0
schnell aufgestellt. m, y,=—m,g

Die kartesischen Koordinaten der beiden Pen- .

delmassen erfiillen fiir alle Zeiten zwei Xi+x=1]
Zwangsbedingungen, die die unveranderli- (x,=x, ) +(y,~y,)’=1;
chen, eben ,starren’ Pendelldngen festschrei- z,=0

ben. Zwei weitere Zwangsbedingungen zur- z,=0

ren das Problem als ein ebenes fest.

Mit Worten ausgedriickt bedeuten diese Zwangsbedingungen: Die ,obere’ Masse m; bewegt sich
auf einem in der rdaumlichen Lage fixierten Kreis K; mit dem Radius l; um den Ursprung (0, 0,0)
des Koordinatensystems; die ,untere’ Masse m, bewegt sich auf einem auf dem fixen Tragerkreis
K; mitgefiihrten Kreis* K, mit dem Radius 1,, der den zeitabhingigen Mittelpunkt (x;, y;,0) hat
(siehe Abbildung 2). Beide Kreise liegen in der Ebene z=0.

.....
.......

Abbildung 2: Epizykel K, reitet auf dem Trigerkreis K;

o

(2) Epizykel genannt: Das ist ein Kreis, dessen Mittelpunkt auf einem Tragerkreis gefiihrt wird.
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1.2 Die Lagrangeschen Bewegungsgleichungen

Im Lagrange-Formalismus der zweiten Art werden die Zwangsbedingungen durch eine geeigne-
te Wahl von generalisierten Koordinaten berticksichtigt, der Formalismus der ersten Art fiihrt

(aufwendiger) explizite Zwangskrifte ein, die die Massen auf die gewiinschten Bahnen zwingen.

Als generalisierte Koordinaten im Lagrange-
Formalismus werden fiir die beiden Freiheits-
grade die Auslenkungswinkel 6, und 6, (und
deren Differenz AB = 6, — 8,) verwendet.

X, =1, sin0,

YI:_ll COSGI Aezel_ez
X, = X,+1, sin6,
¥, =y,— 1, cos,

Der Leser rechnet leicht nach, dass mit diesen Winkeln die obigen beiden Zwangsbedingungen

quasi ,automatisch’ erfiillt werden.

Die kinetische Energie T ergibt sich wie folgt
aus den Geschwindigkeiten v; (i=1,2) der Pen-
delmassen, wobei die Punkte iiber den Koor-
dinaten deren zeitliche Ableitung meint.

2 .2 .2
Vi =Xty Tzl—m V2
) 5 MV

+11nV2
2 _ g2 9 272
Vo, = XY,

Die potentielle Energie V im homogenen
Schwerefeld der Erde ist gegeben durch:

V=mgy +m,gvy,

Die Gesamtenergie E des Doppelpendels ist
eine Konstante der Bewegung, ist eine Erhal-
tungsgrofie.

E=T+ V = const

Die kinetische Energie T und die potentielle Energie V werden im Langrange-Formalismus als

Funktionen der generalisierten Koordinaten 6; und deren zeitliche Ableitungen 0, benétigt, da-

zu braucht es die zeitlichen Ableitungen der kartesischen Koordinaten x; und y;. Mit etwas Rech-

nerei erhdlt man daraus die beiden Energien T und V in den gewiinschten Abhadngigkeiten von

den gewdhlten generalisierten Koordinaten.

X, =1, cosO, 0,
y,=1,sin0, 0,

X, = %, +1, cos, 0,
Y=Y, +1,sin6, 62

1

T(6,,6,,0,,0,) = ;—(m1+m2)1f 6 + 2—m21§ 6+ m,1,1, 6,0, cosAD

V(0,,0,) = —(m,+m,)gl, cos®, — m,gl, cos0,

Mit den 3 folgenden ,willkiirlichen” Konstanten werden die Formeln (fiir meinen Geschmack) et-

was Ubersichtlicher.

M =
m,+m, 1, 1,

m,#0 1,#0

Die kinetische Energie

T(6,,6,,6,,6,) = ¥, (6% +uA’ 63+ 2un 6,6, COSAG)

1
Y1 = 5(m1+m2)lf
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Die potentielle Energie
V(elaez):Yv (COS61+M?\. Cosez) Yv:_(ml"'mz)ll g

Die Gesamtenergie

E(0,,0,,0,,0,) = v, (Of +u)’ 0+ 2pr 60,0, cosAO) + 7y (cos®, + pA cosO,)

Die zwei Bewegungsgleichungen im Lagran- oL d oL _
ge-Formalismus ergeben sich dann fiir die ge- » 00, dto0.
neralisierten Koordinaten aus der Langrange- L=T-V oL d o Ll
Funktion L und den nebenstehenden Lagran- 30, dto6. =
ge'schen Gleichungen. 2

(m,+m,)1, &, + m,1, 6, cosAO + m,1, 65 sinA6 + (m,+m,)g sin6, = 0

m,1, 6, cosAB + m,1, 6, — m,1, 67 sinAO + m,g sinB, = 0

Es sind die nachfolgenden Bewegungsgleichungen, die ich so aufbereite, dass nicht ich sondern
das Werkzeug Scilab fleifsig zu tun hat — Laufzeiteffizienz ist hier kein Thema.

Die Bewegungsgleichungen 2. Ordnung
O, +uk cosA® B, +uh sinA® 6 + o sinB, =0
cosAB B, + L 6, —sinAO 6 + o sinB, =0




7 Das Doppelpendel im Lagrange-Formalismus mit Scilab

1.3 Aufbereitung der Bewegungsgleichungen fir Scilab

Ziel der weiteren Schritte ist eine Umstellung der Bewegungsgleichungen in eine Matrix-Form,
die von Scilab elegant verarbeitet werden kann.

plgel plzél ngez pzzéz

P, +uh cosAB p,+uksinAf ps+ o sinh, =0
cosAB® p,+ A p,—sinAB p;+ wsinh, =0

( 1 wh cosAG)(pl):(—ux sinA @ pi—msin@l)

cosAB A P> sinA@ p’ — w sin,
p= P p= p:1 b = b, 9:(31) 0= (_31
P> P> b, 2 0,
A=A(8) b=b(6,p) Ap—-b=0 p=A"'b
Die anfanglichen Lagrangeschen Bewegungs- )
gleichungen lassen sich dann in Matrixform 6=p
ausschreiben als Differentialgleichungen 1. p=A"'(8)b(6,p)
Ordnung;:
A= 1 wA cosAG) b:(bl) b, =—uAsinA6 p; — w sin6,
cosAB A b, b, =sinA® p. — w sinb,
Determinante von A ) Inverse Matrix A™ von A
|A[=2 (1 —ucos”AB) Al L[ A —wA cosA6
Al#0 V6,6, |A] \—cosA® 1

Mit dem wisschenschaftlichen Werkzeugkasten Scilab kann man sich auch den Weg {iber die in-
verse Matrix A" sparen — wenn man sich die zusatzlichen Rechenzeit leisten will und kann, und

lasst Scilab A™ fiir jeden Winkel berechnen’. Die 4 Differentialgleichungen lassen sich dann in ei-
ner kompakten Form darstellen, die Scilab in dieser Form ohne weiteres verarbeiten kann.

Matrixgleichung in Scilab Losungsvektor der Matrixgleichung in Scilab
Ap=b |A]#0 p=A\b
Differentialgleichungssystem des Doppelpendels Differentialgleichungssystem fiir Scilab
[9] _ P [e} = P
p) |A7'(6)b(6.p) p) [A(8)\b(6,p)

Die geschweiften Klammern sollen hier andeuten, dass die Gleichheit komponentenweise zu
verstehen ist. Der Riickstrich ,\‘ bezeichnet in Scilab die linksseitige Matrixmultiplikation:
x=A\Db ist eine Losung der linearen Matrixgleichung A x=b.

(3) Solche Werkzeuge wie die Computeralgebrasysteme Mathematica oder Maxima gehen einen grofien
Schritt weiter und kdnnen einem einen Haufen ldstigster Arbeit wie das Umformen von Gleichungen
ersparen.
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Die 4 Funktionen auf der rechten Seite des functi on ydot= 2fa’pLagravnge(t YD
obigen Gleichungssystems sind es, die dem ‘gé;igd%;c(gi;yé %:1 ”

i - i 1 uck- wa=Twdot(wl,ws,pl,ps);
SC1lab‘ Integrato1‘“ ode in de‘r For@ einer Riick bd—Fpdot (wl w2 pl.p2)
gabeliste ydot einer Funktion, hier fapLa- ydot=wd (1)*[1;0;0;0]
grangebeziehungsweise fdp genannt, iiber- i‘ggg %% 0i1s %
geben werden, zusammen mit dem Tripel der +pd(2)*[0;50;0;5115

. ) endfunction;
gewlinschten Anfangsbedingungen yo, to,
fdp=rfapLagrange;
tbata. yData=ode(y0,t0,tData, fdp);
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2 Das Energieverhalten der Scilab-Losungen

Fiir abgeschlosssene physikalische Systeme, solche also die mit der Umgebung keine Energie
austauschen, gilt das grundlegende Gesetz von der Erhaltung der Energie. Erhélt das Pendel mit
den gewdhlten Anfangsbedingungen zur Zeit t, eine Gesamtenergie E, so bleibt die Gesamt-
energie des hier modellierten Pendels fiir alle Zeiten erhalten, in der Form einer Gleichung aus-
gedriickt: Eg=E(to)=E(t), V t > t,.

Jede numerisch gewonnene Losung der Bewegungsgleichungen fiir ein Pendel muss zum einen
natiirlich die Zwangsbedingungen’ zum anderen die Energieerhaltung in vorgegebene Grenzen
erfiillen. Es macht also Sinn, die numerischen Losungen dahingehend zu tiberpriifen, gerade
auch weil das Doppelpendelproblem zu den Problemen gehort, die einem ,deterministischen
Chaos’® unterliegen und numerische Lsungen gerne auch mit einiger Vehemenz infrage gestellt
werden.

2.1 Das Einfachpendel

Das ebene Einfachpendel und seine numerischen Losungen im nichtlinearen Bereich dient mir
als Anschauungsbeispiel, um ein ,Gefiihl’ fiir das Energieverhalten bei dessen numerischen Lo-
sungen mittels Scilab zu erhalten.

Die Pendeldaten Masse, Lange und Zeiten sind gegeben durch:

ml=1.0 Pendelmasse [kg]

. t0=0 t_end=20 Dauer [s]
11=1.0 Pendelldnge [m]

Die Anfangsbedingungen in den Einheiten Bogengrad [°] und Bogengrad pro Sekunde [°/s] so-
wie das oder die numerischen Losungsverfahren sind den Grafiken zu entnehmen.

Einfaches Verhalten: Schwingen

Das einfache Pendel schwingt ohne einen weiteren Anschub einfach nur brav hin und her, mehr
ist nicht drin. Ich z&dhle in der nachsten Abbildung 3 knapp 82 Schwingungen in der Laufzeit
von 20 Sekunden ; ein Uhrenpendel mit einer Pendelldnge von 0,994 m und einer kleinen An-
fangsauslenkung schwingt hierzulande in 20 Sekunden genau 10 mal hin und her: Grofiere an-
fangliche Auslenkungen auflerhalb des Winkelbereichs, in dem lineare Naherungen fiir die Be-
wegungsgleichungen sinnvoll sind, fithren zu langeren Schwingungszeiten, zu einem langsame-
ren Schwingen zwischen den beiden Maximalamplituden von +90°.

(4) Die Zwangsbedingungen werden im Lagrange-Formalismus (der 2. Art) iiber die generalisierten
Koordinaten berticksichtigt.

(5) Kleine Anderungen der Anfangs- oder der Parameterbedingungen fiihren zu ,grofien’ Anderungen im
Losungsverhalten — der beriihmte Schmetterlingseffekt.
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Einfachpendel - Pendelwinkel dber die Zeit
= EP==-290|0|rk

Pendelwinkel [
=]
|

a1

Abbildung 3: Verlauf des Pendelwinkels iiber die Zeit

Nichts stort das Einfachpendel beim Hin- und Herschwingen, so harmonisch wie der Mensch
seit den alten Griechen bis hinein in die Neuzeit die Welt gerne sahe, so gottlich wohlgeordnet
und einfach zu verstehen, alles andere ware Teufelswerk. Die Neuronen haben sich an dieses

lineare Naturverstandnis gewohnt.

1.6a-07

Einfachpendel - Energieverhalten Gber die Zeit
= EP ==-90|0]||rk

1407

1.2e-07

1a-07 —

Ba-08

Sa-08

4a-08 —

2a-08 —

Abweichungen vom physikalischen Wert Etat [Joule]

Vo

T T
2 E L]

T T T T T T
10 12 14 16 18 20

Zeit [s]

m

Etot (1) - Etat(0)

Abbildung 4: Verlauf der Abweichungen der Gesamtenergie
von der anfinglichen Gesamtenergie iiber die Zeit
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Eine moderat stufenartig wachsende Tendenz des zeitlichen Verlaufs der im Theorieumfeld kon-
stanten Gesamtenergie E. ist zu erkennen, ich wiirde aber dem Gefiihl nach sagen, dass auch
nach 20 Sekunden und vielen Integrationsschritten die in Abbildung 4 grafisch prasentierte Lo-
sung der Differentialgleichungen noch der Energieschale E(t=0) zuzuordnen ist — die Abwei-
chungen sind minimal, wenn ich als Mafistab etwa die gemittelten kinetischen und potentiellen
Energien mit den Werten +/-4,50526 heranziehe.

Einfachpendel - Pendelwinkel dber die Zeit
> EP ==-90]254 | rk
200

150
100

50

Pendehvinkel 7]
=
|

50 4
~1o0

150

=200 T T T T T T

—_ (i) Feit [s]

Abbildung 5: Verlauf des Pendelwinkels iiber die Zeit

2.2 Komplexeres Verhalten: Kreiseln

Die hohe Anfangsgeschwindigkeit zwingt das Pendel in Abbildung 5 zum ewigen Rotieren, was
bei den hier gewahlten Winkelkoordinaten in der Ebene an den senkrechten Spriingen von +180°
nach —180° erkennbar ist.

Die folgende Abbildung 6 zeigt, dass die Abweichungen von der konstanten Gesamtenergie
auch beim rotierenden Einzelpendel {iber 20 Sekunden Laufzeit mininal sind, bezogen etwa auf
den Wert 9,82635 der Gesamtenergie. Der nun stark ausgepragte, fast sprungartige Verlauf
springt sofort ins Auge, insbesondere auch der nahezu horizonzale Verlauf iiber die rund 2,5 Se-
kunden breite Zeitintervalle. Diese Intervalle liegen um den oberen stationdren Bahnpunkt des
Pendels - fiir den die Anderungsbeschleunigung des Umlaufwinkels verschwindet — und in des-
sen Umgebung sich die Anderungsgeschwindigkeit nur langsam &ndert. Die {ibernéchste Abbil-
dung 7 zeigt, dass in diesem Bereich um den stationdren Punkt die potentiellen und die kineti-
schen Einzelenergien nahezu konstant bleiben.
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Abweaichungen vom physikalischen Wert Etot [Joule]

Einfachpendel - Energieverhalten Gber die Zeit
= EP =>-90| 254 | rk
1.4a-07

1.20-07
1607 — j
Ba-08 | )

Ga-08 |
4a-08 - o

28-08

0aD0 T T T T T T T T T T T T T T T T T T
10

Zeit [5]

Etat (] - Etat(D)

Abbildung 6: Verlauf der Abweichungen der Gesamtenergie iiber die Zeit

Energien [Joule]

Einfachpendel - Energieverhalten dber die Zeit
> EP =>-90]| 2584 || rk

T
el w|wiw)

Abbildung 7: Verlauf der Einzelenergien E, und Ey, iiber die Zeit
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2.3 Das Doppelpendel

Die Pendeldaten Massen, Langen und Zeiten sind gegeben durch:

11=1.0; ml=1.0; Pendelmasse [kg]; Pendellange [m]
12=0.5; m2=0.5; pPendeTmasse [kg]; Pendelldnge [m]
t0=0; tEnd=20; Dauer [s]

Die Anfangsbedingungen in den Einheiten Bogengrad [°] und Bogengrad pro Sekunde [°/s] so-
wie das oder die numerischen Losungsverfahren sind den Grafiken zu entnehmen.

Einfaches Verhalten

Doppelpendel - Pendelwinkel dber die Zeit
> DP==-00|0|/-90| 0| adams
200
150 I.
100 4 :
R\
. A
2 - .i'll q
o 1
= | \ .
o 1 i I | |
e 50 Vo L)
| V ¥
. l_.'I
-100
-150 ] |
-200 ] i 1 v 1 i I i 1 v I i I v I i I i 1
] 2 4 & ] 10 1z 14 16 18 20
1) Zeit [s]
iz if)
Abbildung 8: Verlauf der Pendelwinkel iiber die Zeit fiir 20 Sekunden

Die beiden waagerechten, gestrichelten Linien in kastanienbraun markieren in den Abbildungen
den Winkelbereich zwischen +180° und -180°.

Das Runge-Kutta-Integrationsverfahren von Scilab (,rk’) steigt bei den hier gewéahlten Anfangbe-
dingungen aus mit der kaum sinnstiftenden Meldung ,, An error occurred in 'Isrgk’ subroutine”.
Ich habe nicht nachgebohrt und statt ,rk” einfach ,adams’ benutzt. Der Ausstieg konnte daran lie-
gen, dass bei gleicher Anfangsauslenkung der Pendelkorper die Relativkoordinate ©,(0)—0,(0)
verschwindet.
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Beide Pendel werden anfanglich ,nach links’ um einen rechten Winkel (entsprechend -90°) aus-
gelenkt. Das obere, schwerere Pendel lasst sich durch seinen leichteren Partner im Schlepptau ei-
ne ganze Weile kaum storen, es schwingt noch recht harmonisch hin und her. Das leichtere, un-
tere Pendel schwingt ebenfalls eine ganze Weile synchron mit dem oberen Partner, allerdings be-
reits mit kleinen Dellen, Storungen der reinen Harmonie; zur Zeit 11,5 s tiberholt das kleine Pen-
del allerdings das schwerere zum ersten Mal nach rechts um etliche Bogengrade, dann mit
wachsender Amplitude zur Zeit 15,5s ein zweites Mal, nun nach links — um weiter Schwung auf-
zunehmen, sodass es bei 18,0s fiir einen Uberschlag reicht. Die ndchste Abbildung 9, die nur das
zeitliche Integrationintervall auf 40 Sekunden hoch schraubt, zeigt, dass es bei dem einenn Salto
nicht bleibt, das Ablaufmuster dndert sich ganzlich.

Doppelpendel - Pendelwinkel Gber die Zeit

>DP =>||-90 | 0|90 |0 || 9.81 || adams ||
200

Fendebvinkel [
=]
|
I — —
e —
S —

sofl 1 ¥ ‘-. 'Il L'nl | I |
_II I|i|.|| lel IIU' Il|IJII |UII lll.-'l I"|I| ll- | Iu' :IJI Lr | I' I|LIII Ilu |||4|| .'\:‘:
-100 ' 0 A tHT
] ] |
_1535 _____________________________ ||||'] _______ H[
=200 : . . . — . T
0 5 10 15 20 25 30 35 A0

iy i1 Zeit [s]

iz if)

Abbildung 9: Verlauf der Pendelwinkel tiber die Zeit fiir 40 Sekunden

Spate Einsicht: Ein schlichtes Diagramm, das den Zeitverlauf der Auslenkungswinkel zeigt, sagt
mehr als 1000 Bilder, die ein verganglich fliichtiges Video ergeben.

Die folgenden Abbildungen 10 und 11 widmen sich dem zeitlichen Energieverhalten. Die Ge-
samtenergie ist eine Konstante der Bewegung, sie verschwindet fiir die gewahlten Anfangs-
bedingungen E(t)=0, daher gilt fiir die beiden Teilenergien Eyin(t)=—Ep(t).

Die Abweichungen der berechneten Gesamtenergie iiber die Zeit vom Sollwert erscheinen mir
tiber den Berechnungszeitraum von 20 s marginal zu sein; die mittels ,adams’ berechnete Lo-
sung der Ausgangsdifferentialgleichungen, dargestellt in der Abbildung 8, sollte also eine Lo-
sung sein, wie sie durchaus auch ein physikalischen Doppelpendel in der realen Welt absolvie-
ren konnte. Es muss natiirlich nicht die genau diese eine determinierte Losung sein, deren Exis-

tenz die Mathematik fiir jeden Satz von Anfangsbedingungen auch fiir das Doppelpendel be-
weist.
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Ein Anfangswinkel von 90° klingt nach einem messerscharfen Wert, doch die reele Zahl, die sich
hinter 90 Bogengrad versteckt, ist /2 und die Kreiszahl Pi steht fiir eine nicht-rationale Zahl, die
sich also nicht als Bruch zweier ganzer Zahlen darstellen ldasst und die in allen Zahlensystemen
unendlich viele, nicht-periodisch auftretende Nachkommastellen hat. In der realen Anwendung
haben alle reelle Zahlen allerdings nur endliche Dezimalstellen, womit die reale Existenz der ei-
nen gesuchten Losung in weiteste Ferne riicken kann. Der Leser denke hier an den Schmetter-
lingseffekt.

Da die gekoppelten Differentialgleichungen des Doppelpendels sich nicht per reiner Mathema-
tik geschlossen 19sen lassen, bleibt nur das Experiment mit numerischen Naherungsverfahren,
unterstiitzt durch Hardware und Software. Die moderne Mathematik hat zwar mit einem gro-
8en Aufwand gezeigt, dass auch die Losungsraume deterministisch chaotischer Systeme, zu de-
nen das Doppelpendel gehort, durchaus innere Strukturen aufweisen, besonders unerwartet
und weitergehend hilfreich sind sie zumindest fiir mich und mein Interesse nicht — viel Auf-
wand und wenig Ertrag.

Es bleibt also fiir einen, der schlicht sehen will, wie ein Doppelpendel schwingt, das lustvolle
Experiment mit in allen Belangen endlicher Hardware und Software und er muss dabei all deren
Schwichen in Kauf nehmen, nicht anders als wie bei einem physikalischen Experiment.
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Doppelpendel - Energieverhalten Uber die Zeit

> DP=>-90|0/-90| 0| adams

15

10 4

Energien [Joule]

=104

15

=20

il

4 L] 8 10 12 14
Etotit) Zeit [5]
Ekinit)
Epatit)

Abbildung 10: Verlauf der Pendelenergien des Doppelpendels iiber die Zeit

Abweichungen vom physikalischen Wert Etot [Joule)

1a-05 —

-28-085 <

-3e-05

405 o

-5e-08 —

-G08 -

-Te05

rf——""l rf._l

-1e05 - L

Doppelpendel - Enemgieverhalten dber die Zeit
= DP==-00|0]||-20] 0| adams

Iﬂlﬁ-w-ﬂlrl A
g M~
]
I|"._. »I
- J‘|
T T T T T T T T T
4 6 B 10 12
Etat {t) - Etat(0) Zeit [s]

Abbildung 11: Verlauf der Abweichungen der berechneten Gesamtenergie

tiber die Zeit vom Sollwert
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Komplexes Verhalten

Die beiden waagerechten, gestrichelten Linien in kastanienbraun markieren den Winkelbereich
zwischen +180° und -180°.

Doppelpendel - Pendelwinke! dber die Zeit
> DP=>-80|254 | 90 |0 || adams

Pendelinkel [°]

i it Zeit [SI

Abbildung 12: Verlauf der Pendelwinkel iiber die Zeit
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Doppelpendel - Energieverhalten dber die Zeit
> DP==-90|254| -90 |0 || adams
35

10

Energien [Joule]

5 - | |

| 1/ 'I
-0 4! I| = | [kt 11

-15—' 1 (R 11

Etat(t) Leit 5]
Ekinit)
Epat(t)

Abbildung 13: Verlauf der Pendelenergien iiber die Zeit

Abweichungen vom physikalischen Wert Etot(0) [Joule)

Doppelpendel - Energieverhalten dber die Zeit
= DP==>-80]|254| -90|0| adams
Ba-05 -

Ba-05 -
4a-05 —

2a-05 L‘

-2e05

=405

Ged3 L " I T T S y T T — y T
0 2 4 G & 10 12 14 15 15

Etot {t] - Etat{0) Zeit [s]

Abbildung 14: Verlauf der Abweichungen der berechneten Gesamtenergie
iiber die Zeit vom Sollwert E1or(0)
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3 Die Stabilitat der Scilab-Losungen

11=1.0; ml=1.0;
12=0.5; m2=0.5;
t0=0; tEnd=20;

Pendelmasse [kg]l; Pendelldnge [m]

Pendelmasse [kg];  Pendellédnge [m]

Dauer [s]

3.1 Einfluss von Integrationsverfahren

Die beiden waagerechten, gestrichelten Linien in kastanienbraun markieren den Winkelbereich
zwischen +180° und -180°.

Die anfanglichen Winkelgeschwindigkeiten wurden hier auf 10°/s gesetzt, da das Losungsver-
fahren ,rk’ fiir den Anfangswert 0°/s regelméafSsig mit einer Ausnahme ausstieg.

Einfaches Verhalten

Doppelpendel - Pendelwinkel Gber die Zeit
= DP1==-90|10| -90 |0 || adams
> DP2=>-90[10] 90 |0 || rk

150

100 A

Pendewinkel [°]

Zeit [s]

Abbildung 15: Zwei langsame Doppelpendel berechnet mit ,adams’ und ,rk’

Komplexeres Verhalten

Pendelwinkel [°]

Doppelpendel - Pendelwinkel Gber die Zeit
> DP1==>-90|254]|-90|0 || adams
= DP2=>-90|254|-90|0|| rk

Zeit [s]

Abbildung 16: Zwei schnelle Doppelpendel berechnet mit ,adams’ und ,rk’
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3.2 Einfluss von Anfangsbedingungen

Die beiden waagerechten, gestrichelten Linien in kastanienbraun markieren den Winkelbereich
zwischen +180° und —180°.

Die anfanglichen Winkelgeschwindigkeiten wurden hier auf 10°/s gesetzt, da das Losungsver-
fahren ,rk’ fiir den Anfangswert 0°/s regelméafsig mit einer Ausnahme ausstieg.

Einfaches Verhalten

Zwei langsame’ Doppelpendel DP1 und DP2 werden im Zeitablauf verglichen. In der Abbil-
dung 17 unterscheiden sich die anfanglichen Auslenkwinkel fiir das obere Einzelpendel unter-
scheiden sich um 1°, erst nach 19 Sekunden zeigen sich signifikante Unterschiede im Verhalten.
In der Abbildung 18 betragt der anfangliche Winkelunterschied fiir das obere Einzelpendel nur
noch 0,1°, nach 19 Sekunden sind die ersten kleinen Anderungen im Ablauf zu erkennen.

Doppelpendel - Pendelwinkel Gber die Zeit
= DP1==-80|10| 90 |0 || rk
= DP2==-89 |10 20 |0 ||rk

Pendelwinkel [°)

Abbildung 17: Zwei langsame Doppelpendel berechnet mit AO(0)=1° und ,rk’

Doppelpendeal - Pendelwinkel dber die Zeit
> DP1=>-90 |10]|-90|0 | rk
> DPF2=>-89.9|10]|-90|0 | rk

Pendetwinkel |°]
=
1

T T T T T T T T T
o 1 2 3 4 5 6 T ] a 10 1 12 13 14 15 16 17 18 19 20
Zeit [s]

Abbildung 18: Zwei langsame Doppelpendel berechnet mit A0(0)=0.1° und ,rk’
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Komplexeres Verhalten

Zwei ,schnelle’ Doppelpendel DP1 und DP2 werden im Zeitablauf verglichen, die anfanglichen
Winkelgeschwindigkeiten fiir beide Einzelpendel wurden dazu auf 254°/s gesetzt; das untere
Einzelpendel hdngt hier anfanglich nach unten.

In der Abbildung 19 unterscheiden sich die anfanglichen Auslenkwinkel fiir das obere Einzel-
pendel um geringe 0,1°, schon nach 2 Sekunden beginnen sich signifikante Unterschiede im Ver-
halten abzuzeichnen. In der Abbildung 20 betrédgt der anfangliche Winkelunterschied fiir das
obere Einzelpendel nur noch winzige 0,001°, dennoch beginnen sich bereits nach 5 Sekunden
die Verhaltensweisen signifikant zu unterscheiden.

Doppelpendel - Pendelwinkel Gber die Zeit
= DP1==-90 |254||0|0]||rk
> DP2=>-89.9|254||0|0||rk

Pendetwinkel [*]

Abbildung 19: Zwei schnelle Doppelpendel berechnet mit A0(0)=0.1° und ,rk’

Doppelpendel - Pendelwinkel Gber die Zeit
> DP1=>-90 1254 |0 0| k
= DP2=>-80.099 |254 | 0|0 | rk

Pendetwinkel [°]

DL & (n Zeit [s]
D a6
rrrrrrrrrrrrrrrrrrrrrrr DI & (6

Abbildung 20: Zwei schnelle Doppelpendel berechnet mit A0(0)=0.001° und ,rk’
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Etwas Anhang

A. Quotientenmengen fir Winkel

Relationen

Eine (zweistellige) Relation in einer Menge M
wird definiert als eine Teilmenge ~ der Pro-
duktmenge M”.

Produktmenge
M* ¥ MxM = {(x,y)| xEM A yEM]

Relation als Teilmenge
~ C M2

Eine Relation ~ in einer Menge M heifst Aquivalenzrelation, wenn sie reflexiv, symmetrisch und

transitiv ist.

Die Relation ~ ist reflexiv
oV o (x~x)
XEM
Die Relation ~ ist symmetrisch

oV V :(x~y=y~x)

x€EM yeM

Die Relation ~ ist transitiv

oV V V i (x~yAy~z=>x~2)

XEM yeM zeM

Die Menge aller zu einem x aus M in Relation stehender Elemente aus M heift Aquivalenzklas-
se [x]. Jedes Element aus M ist in genau einer Aquivalenzklasse enthalten und diese Klassen

sind paarweise disjunkt.

Eine Aquivalenzrelation erzeugt eine neue Menge M/~, die Menge der Aquivalenzklassen von
M; sie wird die Quotientenmenge von M nach ~ genannt.

Aquivalenzklasse [x] der Relation ~

[x]=[y | XEM A yEM A x~Yy]

Quotientenmenge M/~ von M nach ~

M/~ ={[x]| xeM]

Ein Element y e[x] aus einer Aquivalenzklasse [x] heif3t Reprisentant der Klasse [x].

Eine Teilmenge R. aus M heifit vollstindiges Reprisentationssystem der Menge aller Aquivalenz-
klassen M/~, wenn R. genau ein Element jeder Klasse von M/~ enthalt.
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Die flache Einheitssphare S’

Die beiden Groflen, die die Position der Pendelmassen’ in der Schwingungsebene festlegen und
die hier als generalisierte Koordinaten zur Problembeschreibung verwendet werden, sind
schlichte, geometrisch definierte Winkel, deren Winkelweite in Bruchteilen des Vollkreises ge-
messen wird. Im Bogenmaf} wird dem Vollkreis die ,Lange’ 2m als Mafizahl zugewiesen. Ich
verwende gerichtete Winkel, um die Richtung der Auslenkung der Pendelmassen mit Werten
aus dem Intervall (—7,+ rt] zu beschreiben. Eine Besonderheit gilt es nun zu berticksichtigen:
Die Punkte mit den reellen Zahlenwerten — 7t und +m sollen im Ortsraum eines Pendels densel-
ben Punkt beschreiben. Dazu folgt etwas an mathematischen Formalismus:

v,w €
In den reellen Zahlen R sei eine Aquivalenz- v~w:e (An€Z > v=w+2m n)
relation namens ~.fgr die Werte v und w wie (W] [v|weR A vER A v~w]
nebenstehend definiert:

Sl R/~

Ein Winkelwert w aus dem halboffenen vollstaindigen Reprasentationsintervall dieser Relation
W_=(-m,+mt]cR dient als ein Reprasentant der Aquivalenzklasse [w]e R/~, insbesondere gehort
der linke Randwert — 1t des Intervalls zur Aquivalenzklasse [+7t]., denn es gilt ja die Aquivalenz

(—m) ~ (+m), beziehungsweise ausgeschrieben (- ) = (+7)—27t.

Die eindimensionale’ Quotientenmenge S'
lasst sich in einen zweidimensionalen
Produktraum IR? = R x R einbetten.

S' = {(cosH,sinB) | 0EW_] c R’

2 .2
cos O+sin“06 =1

Die iiber Aquivalenzklassen definierte Einheitssphare S' lasst sich somit eins-zu-eins auf die

Einheitskreislinie im IR? abbilden.

Der flache Torus T?

In dem Produktraum IR? sei eine Aquivalenz-
relation namens o flir die Werte v und w wie
nebenstehend definiert:

v,w €R’ v=(v,,v,) w=(w,,w,)
vilw:e (V1~W1)/\(V2~w2)

(W] [v|weR*AvER> A viiw]

Mit dieser Aquvalenzrelationa lasst sich der
flache zweidimensionaleTorus T? als Quotien-
tenraum definieren oder auch direkt als topo-
logisches Produkt der Einheitsshire S'.

T? & R*/[)
T? = S'xS'

(6) Genauer: deren Schwerpunkte
(7) Deshalb der Terminus ,flach’ in der Uberschrift.
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B. Die Lagrangeschen Gleichungen 1. Art

Die beiden Massen des Doppelpendels konnen nicht beliebig frei im Raume herum schwingen,
per Konstruktion schwingen sie nur in einer Ebene, zudem sind die Verbindungen der Pendel-
massen starr und somit von fester Lange: Die Pendelmasse 1 bewegt sich auf einem Kreis um
den Aufhangepunkt O, die Pendelmasse 2 auf einem Kreis um die Pendelmasse 2. In den New-
tonschen Bewegungsgleichungen miissen diese vorgegebenen, die Dynamik einschrankenden
Bedingungen berticksichtigt werden.

Die althergebrachte Mechanik erganzt dazu die Newtonschen Bewegungssgleichungen um
Zwangskrafte, die die Dynymik im gewiinschten Mafle einschranken.

Abbildung 21: Orts- und Kraftvektoren
fiir das ebene Doppelpendel

.. . . .. = Ki(?i):_mlgéy ie(12]
Die hier wirksamen, treibenden Krifte K, R L
lassen sich iiber den Nabla-Operator V,; aus Vi(F) =m; g y'rl) — ;8
einem Potential V; ableiten; V; ist die potenti- f{i (‘fi) =-V.V. (?i)
elle Energie des Teilchen im homogenen 5 5 5
Schwererfeld der Stérke g. V,ge —+¢, —+¢, —

Der Nabla-Operator V aus der Vektoranalysis ist ein Vektor, dessen Komponenten die partiel-
len Ableitungen nach den kartesischen Koordinaten x, y und z sind. Der Index i bezieht sich
hier auf die i-teVariable T, einer Funktion f,(¥,,T,) , auf die hier der Nabla-Operator wirken
soll.

Diese beiden Zwangsbedingungen beschrei-

ben das Doppelpendel als starr. Das Punkt- f(f,)=T -1=
teilchen 1 hat vom Aufhangepunkt O den T 7 _3%
=TI~ T

konstanten radialen Abstand 1;. Das Punktteil-
chen 2 hat vom Punktteilchen 1 fiir alle Zeiten fz(fl , ?2) = _fo - 1; =0
den konstanten radialen Abstand L.
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Diese beiden Zwangsbedingungen legen fest,
dass sich beide Teilchen per Konstruktion des
Doppelpendels fiir alle Zeiten nur in einer
Ebene bewegen konnen.

d Lo 2
af(rlarzat) Z[ Vf( )}

i=1

d
dt d
d? - 3 o 22 d? - - 22
ﬁfl(rl) =271, 1,+21,=0 i fz(rl,r2) =271, T,+271,=0
d - ) } d -
af3(r1)zz1:0 2,=0 af“(rz)zzzz 2,=0

0
—f =0 ke(1,2,34
8‘[ k {aea}

Ungebunden hatten die hin und her schwingenden oder auch rotierenden Pendelmassen insge-
samt 6 Freiheitsgrade, die 4 Zwangsbedingungen beschranken die Bewegungsmoglichkeiten
der Pendelmassen daher auf eine (zeitunabhdngige) Flache, die eine zweidimensionale Unter-

mannigfaltigkeit M.c R’®R’ des Ausgangsraumes ist. Eine Moglichkeit, diese Einschrankun-

gen in den physikalischen Bewegungungsgleichungen zu bertiicksichtigen, ist die Einfithrung
von zusdtzlichen Zwangskraften, die bewerkstelligen, dass die beiden Punktteilchen sich aus-

schlieSich auf der zweidimensionalen Mannigfaltigkeit M bewegen konnen.

Lagrangesche Parameter und Zwangskrafte

}\k(?lﬁ_fZJt) k:1727374

Zxk T),T,,t Vf( )

i =K, (1,2] T),T,.t)
=
V.f,(F,)=271,
V. f,(F,,7,)=-27, V,f,(F,,7,) =2 Ty
V. f,(T)=¢, V,f,(%,) =8,
Z, =2\, 2h, T+ Ay 6 Z,=20, T +A, 8,

Die vollstandigen Bewegungsgleichungen

—>

m, T, =K,(F)+2A T, —2A, T+ A &,

mz?z = K2<i:2) +2M, ?12 + A, €,
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Die Energien

Kinetische Energie der Masse i
> 1 32
T, (7)) = 5 Mili

Potentielle Energie der Masse i

Vi(?i) =m; g (éy'_fi) =m; gy;

Gesamtenergie beider Massen
E(t) = E(?17?19?27?2;t)

m; ;T dt (2 i 1) Ti(rl) Ki(ri) r,= (Vivi(rl)) r,= dt Vi(rl)
5 = - > d - - d 2 - = - -
{miri_Ki<ri)} rl_a(Tl(ri)+Vl(rl)) d_tE<t):Z{m1rl_K1(ri)} ri

Fiir unser abgeschlossenes System Doppel-
pendel, welches also mit der Umgebung nicht
wechselwirkt, gilt der Satz von der Erhaltung
dessen Gesamtenergie :

Die Energieerhaltung

- - d > - -
f(f,,t)=7 —1,(t)=0 afl(rl,t)=2 rl-r1+g—tf(r1,t)—0
d - d .

CE)= -0 Tt (F ) TE0=20,L(0)1(1)#0
Der Drehimpuls
p; = m; T, lemi?i:?le‘;izg_t(_fix_ﬁi)_%i‘
M, =7, x K, IC/Il:—m,.grlXey
d =M, —2h 7 X7 d 7 M, 424, 7 XF
dt 1 1 2+ 2 dt 2= 2 2 41 2

2|~
N
Il
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C. Ausflug in die Zylinderkoordinaten
Abbildung 22: Orts- und Geschwindigkeitsvektoren
fiir das ebene Doppelpendel
Die Einheitsvektoren
. sin© . cosO . 0
ep(e): —cos0 66(9): sin O €, =10
0 0 1

T(x,y,z)=xé +y e, +ze,

A

T(p,0,z)=pe,(0)+zé

z

Einige Skalar- und Kreuzprodukte

AB=6,—-6,
¢,(0,)-€,(8,) = cosAB €,(0,)€,(0,) = cosAD
&,(0,)x&,(6,) =—sinAb & €,(0,) X &,(0,) = —sinA0 &
&,(0,)-,(6,) =sinAB €,(0,)x&:(0,) = cosAD ¢,
&,(0)-85(0)=0 &,(0)xe,(0)=¢,
&,(8)xe, = —cosh ¢, &,(0)xe, = —sin(0) &,
&,(0)xé&, =sin6 ¢, &y(0)x&, = cos(0) &,
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Die zeitlichen Ableitungen der Einheitsvektoren
ép(e) :6 éﬁ(e) éﬁ(e):_e ép(e) ézza

Die Orts- und Geschwindigkeitsvektoren

fu(ez) =1,
|?12(62)| =1,

ép(ez)

f2(61,62) = i:1(81) + ?12(62) f2(61,62) =1 ép(el) +1, ép(ez)

[7,(0,,6,)] = V12 + 21,1, cos A6 + 12

?1(61) =1 el é6<el) ?12(62) =1, ez ée(ez)

?2(61362) =1, 61 ée(el) +1, 62 ée(ez)

(0,) X 1,(0,,0,) =—1,1,sinAO &,

=i

D. Rund um den Drehimpuls

Der Drehimpuls I_:i eines Punktteilchens der Masse m; am Orte
T, mit dem Impuls ist definiert durch das vektorielle Kreuz-
produkt aus Orts- und Impulsvektor.

Der Gesamtdrehimpuls L des Doppelpendels ergibt sich durch
eine Summe iiber die Einzelteilchen. Bezugspunkt der Drehim-
pulse ist der Aufthangepunkt O des Doppelpendels.

nls

| qui -]
I I
M- =
Ll
[
Nl
inll

X

=l

11
—_
-

11
i

Das Drehmoment 1\7[i eines Punktteilchens der Masse m; am
Orte T, , auf dem eine Kraft K, wirkt, ist definiert durch das

vektorielle Kreuzprodukt aus Orts- und Kraftvektor.

Das Gesamtdrehmoment M , das auf das Doppelpendel wirkt,
ergibt sich durch eine Summe {iber die Einzelteilchen. Bezugs-
punkt des Drehmomentes ist der Aufhangepunkt O des Doppel-
pendels.

Die zeitlichen Entwicklung des Drehimpulses wird durch das
wirksame Drehmoment bestimmt.

Ki:—migey

—_ 2 = 2 -

M:ZMi:Z?1XK1
i=1 i=1

d - N

—L=M

dt

Das Drehmoment

2 2
N/IZZMiZZ?XK Kz—mig e,

1 1 1

N/Iz(Gl,Gz):—ng (1, sin®,+1, sin0,] €,
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M(elaez):Yv [sin®, + p X sin6,] ¢, YV:_(m1+m2)11 g

Der Drehmomentvektor des Doppelpendels steht somit konstant senkrecht auf der Schwin-
gungsebene.

Der Drehimpuls

£,(70,8,,6,) = m, [I7 6, + 1,1, (6,+6,) cos AB + 13 6, &,

gt

(Ae,gl,gz) =y, [61 +UA (91+92) cosAD + u}& 92] e,

£(A0,0,,6,) = v, [0, +pun (8,+6,) cosAB + pn (63-67) sinAB +p2’ b, ¢,

| e

Auch der Drehimpulsvektor des Doppelpendels steht somit senkrecht auf der Schwingungs-
ebene, hier die x-y-Ebene.
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E. Die Sonderfalle

Verschwindet Schwerkraft oder ist sie zu vernachlassigen, so gilt das auch fiir das Drehmoment
M(t)=0 mit der Folge, dass eine zweite Konstante der Bewegung ins Doppelpendelspiel
kommt: der Gesamtdrehimpuls ist nach Betrag und Richtung eine Konstante L (t)=L(0)

Die Schwerkraft ist etwa zu vernachlassigen, wenn die kinetische Energie sehr grofS wird und
die potentielle Energie beschrénkt bleibt’. Diesen Fall realisiert man einfach mit groen anfang-
lichen Winkelgeschwindigkeiten.

Die Losungen fiir all diese Falle lassen sich mithilfe der konstanten Bewegungsgrofien durch ei-
ne direkte Integration gewinnen, worauf ich hier allerdings verzichte. Ich benutze auch fiir die
Sonderfille den oben abgeleiteten Losungsweg mit Scilab.

2

1
AB=6,-6, YL:(m1+mz)11 ’YT:2_(ml+m2)1%

Die konstante Gesamtenergie fiir g=0

E(AG,QI,OZ) =Y: [6? +2uA 9192 cosAD + p,kz 9;] =E,

Der konstante Gesamtdrehimpuls fiir g=0
L(A0,0,,0,)=1v, [91 +u) (0,40,) cosAB + p)’ 92} e, =L,¢

V4

Fiir die nachste Abbildung 23 habe ich die Gravitationskonstante mit 0,981 auf ein Zehntel ihres
Erdwertes reduziert und die Integrationszeit auf 80s verdoppelt. Das leichtere Pendel braucht
nun gut 55s, bis es sein Hin- und Herschwingen so sehr aufgeschaukelt hat, dass es Vollkreise
durchlaufen kann. Der Bewegungstypus gegeniiber Abbildung 9 ist aber unveréandert.

Die iibernadchste Abbildung 24 setzt die Gravitationskonstane auf Null; damit sich das Pendel
iiberhaupt in Bewegung setzt, wird die anfangliche Winkelgeschwindigkeit die schwerere Pen-
delmasse auf den hohen Anfangswert von 254 m/s” gesetzt. Der Bewegungstypus ist der einer
im wesentlichen nur leicht gestorten periodischen Bewegung, beide Korper rotieren in Vollkrei-
sen.

In der letzten Abbildung 25 wird die irdische Schwerkraft wieder in Kraft gesetzt und die
schwerere Masse auf den sehr hohen Anfangswert von 1270 m/s” gesetzt. Wie zu erwarten bewe-
gen sich beide Pendelmassen nun ganz dhnlich dem schwerelosen Fall der Abbildung 24.

(8) ... also die Pendelmassen beschrankt bleiben
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Pendehvinkel [7]

Doppelpendel - Pendelwinkel Ober die Zeit
=DP ==||-90| 0]||-90| 0| 0.981 || adams ||

Abbildung

23: Verlauf der Pendelwinkel iiber die Zeit fiir 80 Sekunden

Pendelwinkel [7]

Doppelpendel - Pendelwinkel dber die Zeit
=0DP ==||-90| 254 ||-90| 0 || O|| adams ||
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Abbildung 24: Verlauf der Pendelwinkel iiber die Zeit fiir 20 Sekunden
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Pendelinkel [°)

Doppelpendel - Pendelwinkel Uber die Zeit
=DP ==||-90 | 1270 || -90 | 0] 9.81 || adams ||

N it Zeit [5]
Bz i)

Abbildung 25: Verlauf der Pendelwinkel iiber die Zeit fiir 3 Sekunden
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